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What is tracing?

® Creation of a signature
describing the execution
of a system:

® This talk is about file
system traces

® Ordered sequence of
events

® Statistical aggregation
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What is

Trace replay is the
reproduction of a traced
workload having only
knowledge of a trace.

Replay fidelity is how
accurately the original
workload is reproduced.
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replay?
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Why trace and replay!

HPC at LANL pushes
the limits of storage

systems

R&D collaborators
Classified and controlled
applications cannot be

distributed

Distribute traces, not
apps
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Previous work

/ Heavy weight (ptrace)
strace = Statistical aggregation
Darshan

[/ Trace=—==8Complex inter-node dependencies

blktrace —w |, general, no app-specific info
ScalaTrace

Pianola Aggressive, custom compression

\ Similar approach, unsupported
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Tracing goals

® No code changes

® Entire software stack | 7 )’ Q‘ "v r
b
® |ow-overhead logging ‘s \

® Easily integrated with
existing applications

Noah Watkins 6 jayhawk@cs.ucsc.edu

Tuesday, October 19, 2010


mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu

The observer effect

® A normal function call
incurs virtually no
unnecessary overhead

® |n order to record
function calls, they must
be observed and saved

® Minimizing this overhead
IS Important
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Normal Function Call

Time Application Library

read()

\ read()
/ return()
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The observer effect

® The act of observing an
Captured Function Call application’s execution
. . 9
Time Application Interposition Library alters the GPPIICGtIOn S
read) behavior

\ read()
real_read() \ al read() ® Record a timestamp

s ® Encode data
] e Buffer/write data

® Resource contention
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Our approach to tracing

® |dentify, measure, and
minimize sources of
overhead

|. Interposition
2. Timekeeping
3. Logging

4. Resource
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Tracing architecture

. . Traced Application
® Traced application e
execute as nhormal (|) POSIX | |NetCDF | | HDF5 MPI || MPI-IO
libc
® Inte I‘pOSition |ibl‘a I‘)’ Unmodified Application and Supporting Libraries

forwards events, and

o——©

executes original — ——
function (2) oo |yl [T
Source
MPI-10
1 Output
® Datastreams' library interposition
Library Datastreams
buffers and schedules

trace events (3) V vV ¥

e e o e e e e e e e e e e e e e = e e e e = o = = = = = = = - = = —— = — — —

1. http://www.ittc.ku.edu/kusp
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Evaluation




Interposition cost and
extensibility

® Modular approach to

o link-ti ' . LA
Link-time function interposition libraries:

wrapping provides

minimal interposition cost. o MPI
® read(.)--> __ wrap_read(..) * MPI-IO
o HDF
®  wrap_read(...) o netCDE
® |ogs event e POSIX

® calls _ real read(...)
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Clocks are unpredictable

® Three x86 machine
classes

® 5 clock sources

e Wildly different
results

nanosec / operation

® TSC not shown

® Need pluggable
clock architecture
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Logging cost per core

Average Overhead Per Traced Event
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Logging throughput per core

Maximum Sustained Logging Rates Per Process
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Noah Watkins |5

100K e/s
X 8 cores
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Tracing status

® Integrated into real-
world HPC applications

® Tracing infrastructure
adapted to non-file
system, parallel
applications (VTK data
models)

® Increasing usability and
documentation
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Trace replay goals

® Standardized, portable trace format

o XDR* Google Buffers, Thrift
® Execution modes

® Distributed POSIX traces v.s. MPI traces
® Fidelity assessment

® E.g.total runtime, per-node measurements
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lrace replay

A Y N
[
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® Work in progress
® More research potential

® Inter-node
synchronization
important for fidelity?

2. “Trace: Parallel Trace Replay With Approximate Causal Events”, Mesnier, Michael P, et. al.,, FAST 2007
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